Polymerized ionic liquids (PolyILs) are polymeric materials with high room temperature ionic conductivity and good mechanical properties that are very attractive candidates for practical applications in various solid state electronic devices. In addition to different practical applications of the PolyILs, these materials are excellent model systems for understanding intricate coupling between electrostatics and crowding effects. In this work, we develop and demonstrate experimental studies and predictive theory describing important aspects of PolyILs’ behavior. Delocalization of charges and the larger sizes of ions in PolyILs lead to novel engagement between conductivity and structural properties, which can be significantly different from those observed in conventional polyelectrolytes. Strong electrostatic correlations in PolyILs tend to enhance the effects of ion-pairing and a very small concentration of “free” ions is expected in the absence of electric field. We have also observed significant softening of the PolyIL films beyond certain threshold voltages and the subsequent formation of holes. These findings are important for electrolytes based on PolyILs that target different solid state energy storage applications where strong electric fields are involved.

Reference

“Ion transport and softening in a polymerized ionic liquid”

Computer Science and Mathematics Division, ORNL, Center for Nanophase Materials Sciences, ORNL, Chemical Sciences Division, ORNL, Department of Chemistry and Institute
for Coatings and Surface Chemistry, Hochschule Niederrhein University of Applied Sciences, Germany, aDepartment of Chemical and Biomolecular Engineering, University of Tennessee, bDepartment of Chemistry, University of Tennessee.

Nanoscale. (2014), DOI: 10.1039/c4nr05491a

Acknowledgment of Support
This research was sponsored by the Laboratory Directed Research and Development (LDRD) Program of Oak Ridge National Laboratory (ORNL), and managed by UT-Battelle, LLC, for the U.S. Department of Energy. This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. OO acknowledges support by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, United States Department of Energy under Contract DE-AC05-00OR22725 with Oak Ridge National Laboratory (ORNL), managed and operated by UT-Battelle, LLC. RK acknowledges support by the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract DE-AC05-00OR22725. APS and BGS acknowledge support from the Division of Materials Sciences and Engineering, DOE Office of Basic Energy Sciences.